TKGER
Some papers on Temporal Knowledge Graph Embedding and Reasoning
Useful research resources
-
Graph-based Deep Learning Literature, Github
links to conference publications in graph-based deep learning
-
Reinforcement learning on graphs: A survey, Github
This collection of papers can be used to summarize research about graph reinforcement learning for the convenience of researchers.
-
Awesome Machine Learning for Combinatorial Optimization Resources, Github
Awesome machine learning for combinatorial optimization papers.
-
Awesome-TKGC, Github
A collection of papers and resources about temporal knowledge graph completion (TKGC).
-
AKGR: Awesome Knowledge Graph Reasoning, Github
AKGR: Awesome Knowledge Graph Reasoning is a collection of knowledge graph reasoning works, including papers, codes and datasets.
-
Awesome Knowledge Graph, Github
A curated list of Knowledge Graph related learning materials, databases, tools and other resources.
-
Awesome-DynamicGraphLearning, Github
Awesome papers about machine learning (deep learning) on dynamic (temporal) graphs (networks / knowledge graphs).
-
KGE, Github
Some papers on Knowledge Graph Embedding(KGE)
-
KGLQ, Github
Some papers about Logical Query on Knowledge Graphs (KGLQ)
-
ADGC: Awesome Deep Graph Clustering, Github
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods (papers, codes, and datasets).
-
Graph Adversarial Learning Literature, Github
A curated list of adversarial attacks and defenses papers on graph-structured data.
Tutorial
2024
[1] New Frontiers of Knowledge Graph Reasoning: Recent Advances and Future Trends - WWW 2024, Webpage
2023
[1] Knowledge Graph Reasoning and Its Applications - KDD 2023, Webpage
2022
[1] Reasoning on Knowledge Graphs: Symbolic or Neural? - AAAI 2022, Webpage
2021
[1] All You Need to Know to Build a Product Knowledge Graph - KDD 2021 Tutorial, Webpage
2018
[1] Fact Checking: Theory and Practice - KDD 2018 Tutorial, Webpage
Survey Papers
2024
-
Knowledge Graph Embedding: An Overview, APSIPA Transactions on Signal and Information Processing, 2024. paper Ge, X., Wang, Y. C., Wang, B., & Kuo, C. C. J
-
Survey of Temporal Knowledge Graph Completion Methods, Journal of Computer Engineering & Applications, 2024. paper Lei, X. I. A. O., & Qi, L. I.
-
Overview of Knowledge Reasoning for Knowledge Graph, Neurocomputing, 2024. paper Liu, X., Mao, T., Shi, Y., & Ren, Y.
-
Knowledge graph embedding: A survey from the perspective of representation spaces, ACM Computing Surveys, 2024. paper Cao, J., Fang, J., Meng, Z., & Liang, S.
-
A survey on graph representation learning methods, ACM Transactions on Intelligent Systems and Technology, 2024. paper Khoshraftar, S., & An, A.
-
Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey, ArXiv, 2024. paper Chen, Z., Zhang, Y., Fang, Y., Geng, Y., Guo, L., Chen, X., … & Chen, H.
-
A survey for managing temporal data in RDF, Information Systems, 2024. paper Wu, Di, Hsien-Tseng Wang, and Abdullah Uz Tansel
-
A Survey on Temporal Knowledge Graph: Representation Learning and Applications, ArXiv, 2024. paper Cai, Li, Xin Mao, Yuhao Zhou, Zhaoguang Long, Changxu Wu, and Man Lan.
-
A survey of inductive knowledge graph completion. Neural Computing and Applications, 36(8), 3837-3858, 2024. paper Liang, X., Si, G., Li, J., Tian, P., An, Z., & Zhou, F.
-
Survey and open problems in privacy-preserving knowledge graph: merging, query, representation, completion, and applications. International Journal of Machine Learning and Cybernetics, 1-20., 2024. paper Chen, C., Zheng, F., Cui, J., Cao, Y., Liu, G., Wu, J., & Zhou, J.
-
A comprehensive survey on deep graph representation learning. Neural Networks, 106207, 2024. paper Ju, W., Fang, Z., Gu, Y., Liu, Z., Long, Q., Qiao, Z., … & Zhang, M.
-
Knowledge Graph Embedding: An Overview. APSIPA Transactions on Signal and Information Processing, 13(1), 2024. paper Ge, X., Wang, Y. C., Wang, B., & Kuo, C. C. J.
-
Temporal Knowledge Graph Question Answering: A Survey. arXiv preprint arXiv:2406.14191. paper Su, M., Li, Z., Chen, Z., Bai, L., Jin, X., & Guo, J.
-
Temporal Knowledge Graph Reasoning: A Review. ig Data and Social Computing. BDSC 2024. paper Yu, C., Luo, T., Wang, J., Cao, Z.
-
Neural-Symbolic Methods for Knowledge Graph Reasoning: A Survey. ACM Transactions on Knowledge Discovery from Data. paper Cheng, K., Ahmed, N. K., Rossi, R. A., Willke, T., & Sun, Y. (2024).
-
A survey on temporal knowledge graph embedding: Models and applications. Knowledge-Based Systems (2024): 112454. paper Zhang, Yuchao, Xiangjie Kong, Zhehui Shen, Jianxin Li, Qiuhua Yi, Guojiang Shen, and Bo Dong
2023
-
A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects, ArXiv, 2023. paper
Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu, Linhao Luo, Tengfei Liu, Yongli Hu, Baocai Yin, Wen Gao
-
Knowledge Graphs: Opportunities and Challenges, Artificial Intelligence Review, 2023, paper
Ciyuan Peng, Feng Xia, Mehdi Naseriparsa & Francesco Osborne
-
Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs, ArXiv, 2023. paper
Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen
-
A Comprehensive Survey on Automatic Knowledge Graph Construction, ArXiv, 2023. paper
Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, Xindong Wu
2022
-
Temporal Knowledge Graph Completion: A Survey ArXiv, 2022. paper
Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, Jianxin Li.
Update: Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, Jianxin Li, Temporal Knowledge Graph Completion: A Survey, 2023 Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, Survey Track. Pages 6545-6553. paper
-
Reasoning over different types of knowledge graphs: Static, temporal and multi-modal, ArXiv, 2022. paper
-
A Survey on Temporal Knowledge Graphs-Extrapolation and Interpolation Tasks, Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, paper
Sulin Chen & Jingbin Wang
-
Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs. 2023 Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, Survey Track. paper
Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen
2021
-
Survey on Temporal Knowledge Graph, 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). paper
Chong Mo; Ye Wang; Yan Jia; Qing Liao
Datasets
Name | #Entities | #Relations | #Timestamps | #Collections | Timestamp | Link download |
---|---|---|---|---|---|---|
ICEWS14 | 7128 | 230 | 365 | 90730 | point | https://paperswithcode.com/sota/link-prediction-on-icews14-1 |
ICEWS05-15 | 10488 | 251 | 4017 | 479329 | point | https://paperswithcode.com/sota/link-prediction-on-icews05-15-1 |
ICEWS18 | 23033 | 256 | 304 | 468558 | point | https://docs.dgl.ai/en/0.8.x/generated/dgl.data.ICEWS18Dataset.html |
GDELT | 500 | 20 | 366 | 3419607 | point | https://www.gdeltproject.org/ |
YAGO15k | 15403 | 32 | 169 | 138048 | interval | https://paperswithcode.com/sota/link-prediction-on-yago15k-1 |
WIKIDATA | 11153 | 96 | 328 | 150079 | interval | https://www.wikidata.org/wiki/Wikidata:Main_Page |
2024
Knowledge-Based Systems
[1] Yue, L., Ren, Y., Zeng, Y., Zhang, J., Zeng, K., Wan, J., & Zhou, M. (2024). Complex expressional characterizations learning based on block decomposition for temporal knowledge graph completion. Knowledge-Based Systems, 111591.
[2] Zhu, L., Zhang, H., & Bai, L. (2024). Hierarchical pattern-based complex query of temporal knowledge graph. Knowledge-Based Systems, 284, 111301.
[3] Huang, H., Xie, L., Liu, M., Lin, J., & Shen, H. (2024). An embedding model for temporal knowledge graphs with long and irregular intervals. Knowledge-Based Systems, 111893.
[4] Guo, J., Yu, J., Zhao, M., Yu, M., Yu, R., Xu, L., … & Li, X. (2024). TELS: Learning time-evolving information and latent semantics using dual quaternion for temporal knowledge graph completion. Knowledge-Based Systems, 112268.
[5] Hu, J., Zhu, Y., Teng, F., & Li, T. (2024). Temporal knowledge graph reasoning based on relation graphs and time-guided attention mechanism. Knowledge-Based Systems, 112280.
Applied Intelligence
[1] Wang, J., Wu, R., Wu, Y., Zhang, F., Zhang, S., & Guo, K. (2024). MPNet: temporal knowledge graph completion based on a multi-policy network. Applied Intelligence, 1-17. Github
[2] Ma, Q., Zhang, X., Ding, Z., Gao, C., Shang, W., Nong, Q., … & Jin, Z. (2024). Temporal knowledge graph reasoning based on evolutional representation and contrastive learning. Applied Intelligence, 1-19.
ACM TKDD
[1] Li, X., Zhou, H., Yao, W., Li, W., Liu, B., & Lin, Y. (2024). Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning. ACM Transactions on Knowledge Discovery from Data.
Information Science
[1] (THOR) Lee, Y. C., Lee, J., Lee, D., & Kim, S. W. (2024). Learning to compensate for lack of information: Extracting latent knowledge for effective temporal knowledge graph completion. Information Sciences, 654, 119857.
Extended version from: Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, “THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,” 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127. Github
[2] (Joint-MTComplEx) Zhang, F., Chen, H., Shi, Y., Cheng, J., & Lin, J. (2024). Joint framework for tensor decomposition-based temporal knowledge graph completion. Information Sciences, 654, 119853.
[3] (DGTL) Liu, Z., Li, Z., Li, W., & Duan, L. (2024). Deep Graph Tensor Learning for Temporal Link Prediction. Information Sciences, 120085. Github
[4] (CRmod) Zhu, L., Chai, D., & Bai, L. (2024). CRmod: Context-Aware Rule-Guided reasoning over temporal knowledge graph. Information Sciences, 120343. Github
[5] Dai, Y., Guo, W., & Eickhoff, C. (2024). Wasserstein adversarial learning based temporal knowledge graph embedding. Information Sciences, 659, 120061.
[6] Xu, X., Jia, W., Yan, L., Lu, X., Wang, C., & Ma, Z. (2024). Spatiotemporal knowledge graph completion via diachronic and transregional word embedding. Information Sciences, 120477.
[7] Guo, J., Zhao, M., Yu, J., Yu, R., Song, J., Wang, Q., … & Yu, M. (2024). EHPR: Learning Evolutionary Hierarchy Perception Representation based on Quaternion for Temporal Knowledge Graph Completion. Information Sciences, 121409.
[8] Si, Y., Hu, X., Cheng, Q., Liu, X., Liu, S., & Huang, J. (2025). Coherence mode: Characterizing local graph structural information for temporal knowledge graph. Information Sciences, 686, 121357.
Information Fusion
[1] (MvTuckER) Wang, H., Yang, J., Yang, L. T., Gao, Y., Ding, J., Zhou, X., & Liu, H. (2024). MvTuckER: Multi-view knowledge graphs represention learning based on tensor tucker model. Information Fusion, 102249.
Information Processing & Management
[1] (STKGR-PR) Meng, X., Bai, L., Hu, J., & Zhu, L. (2024). Multi-hop path reasoning over sparse temporal knowledge graphs based on path completion and reward shaping. Information Processing & Management, 61(2), 103605. Github
[2] Ma, J., Li, K., Zhang, F., Wang, Y., Luo, X., Li, C., & Qiao, Y. (2024). TaReT: Temporal knowledge graph reasoning based on topology-aware dynamic relation graph and temporal fusion. Information Processing & Management, 61(6), 103848.
Expert Systems with Applications
[1] (CDRGN-SDE) Zhang, D., Feng, W., Wu, Z., Li, G., & Ning, B. (2024). CDRGN-SDE: Cross-Dimensional Recurrent Graph Network with neural Stochastic Differential Equation for temporal knowledge graph embedding. Expert Systems with Applications, 123295. Github
[2] (TPComplEx) Yang, J., Ying, X., Shi, Y., & Xing, B. (2024). Tensor decompositions for temporal knowledge graph completion with time perspective. Expert Systems with Applications, 237, 121267. Github
Frontiers of Computer Science
[1] (EvolveKG) Liu, J., Yu, Z., Guo, B., Deng, C., Fu, L., Wang, X., & Zhou, C. (2024). EvolveKG: a general framework to learn evolving knowledge graphs. Frontiers of Computer Science, 18(3), 183309.
Neural networks
[1] Shao, P., Tao, J., & Zhang, D. (2024). Bayesian hypernetwork collaborates with time-difference evolutional network for temporal knowledge prediction. Neural Networks, 106146.
[2] Bai, L., Li, N., Li, G., Zhang, Z., & Zhu, L. (2024). Embedding-based Entity Alignment of Cross-Lingual Temporal Knowledge Graphs. Neural Networks, 106143.
[3] 🔥 Mei, X., Yang, L., Jiang, Z., Cai, X., Gao, D., Han, J., & Pan, S. (2024). An Inductive Reasoning Model based on Interpretable Logical Rules over temporal knowledge graph. Neural Networks, 106219. Github
[4] Zhang, J., Sun, M., Huang, Q., & Tian, L. (2024). PLEASING: Exploring the historical and potential events for temporal knowledge graph reasoning. Neural Networks, 106516. Github
Engineering Applications of Artificial Intelligence
[1] Zhu, L., Zhao, W., & Bai, L. (2024). Quadruple mention text-enhanced temporal knowledge graph reasoning. Engineering Applications of Artificial Intelligence, 133, 108058. Github
Journal of Intelligent Information Systems
[1] Du, C., Li, X., & Li, Z. (2024). Semantic-enhanced reasoning question answering over temporal knowledge graphs. Journal of Intelligent Information Systems, 1-23.
Artificial Intelligence
[1] Dong, H., Wang, P., Xiao, M., Ning, Z., Wang, P., & Zhou, Y. (2024). Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning. Artificial Intelligence, 104085. Github
IEEE Transactions on Fuzzy Systems
[1] Ji, H., Yan, L., & Ma, Z. (2023). FSTRE: Fuzzy Spatiotemporal RDF Knowledge Graph Embedding Using Uncertain Dynamic Vector Projection and Rotation. IEEE Transactions on Fuzzy Systems.
[2] An, X., Bai, L., Zhou, L., & Song, J. (2024). Few-shot Fuzzy Temporal Knowledge Graph Completion via Fuzzy Semantics and Dynamic Attention Network. IEEE Transactions on Fuzzy Systems.
[3] Wang, C., Yan, L., & Ma, Z. (2024). Fuzzy Event Knowledge Graph Embedding Through Event Temporal and Causal Transfer. IEEE Transactions on Fuzzy Systems.
Electronics
[1] 🔥 Xu, H., Bao, J., Li, H., He, C., & Chen, F. (2024). A Multi-View Temporal Knowledge Graph Reasoning Framework with Interpretable Logic Rules and Feature Fusion. Electronics, 13(4), 742.
[2] Liu, Y., Shen, Y., & Dai, Y. (2024). Enhancing Temporal Knowledge Graph Representation with Curriculum Learning. Electronics, 13(17), 3397.
Neurocomputing
[1] He, M., Zhu, L., & Bai, L. (2024). ConvTKG: A query-aware convolutional neural network-based embedding model for temporal knowledge graph completion. Neurocomputing, 127680.
IEEE TKDE
[1] Zhang, F., Zhang, Z., Zhuang, F., Zhao, Y., Wang, D., & Zheng, H. (2024). Temporal Knowledge Graph Reasoning With Dynamic Memory Enhancement. IEEE Transactions on Knowledge and Data Engineering.
Tsinghua Science and Technology
[1] Han, Y., Lu, G., Zhang, S., Zhang, L., Zou, C., & Wen, G. (2024). A Temporal Knowledge Graph Embedding Model Based on Variable Translation. Tsinghua Science and Technology, 29(5), 1554-1565.
Applied Soft Computing
[1] Bai, L., Chen, M., & Xiao, Q. (2024). Multi-Hop Temporal Knowledge Graph Reasoning with Multi-Agent Reinforcement Learning. Applied Soft Computing, 111727. Github
IEEE Transactions on Cybernetics
[1] Wang, J., Wang, B., Gao, J., Pan, S., Liu, T., Yin, B., & Gao, W. (2024). MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion. IEEE Transactions on Cybernetics.
IEEE Transaction on AI
[1] Yang, J., Huang, C., Yang, X., Yang, L. T., Gao, Y., & Liu, C. (2024). Temporal Knowledge Extrapolation Based on Fine-grained Tensor Graph Attention Network for Responsible AI. IEEE Transactions on Artificial Intelligence.
IAENG International Journal of Computer Science
[1] Huang, C., & Zhong, Y. (2024). A Novel Approach for Representing Temporal Knowledge Graphs. IAENG International Journal of Computer Science, 51(6).
Information Systems
[1] Jia, W., Ma, R., Niu, W., Yan, L., & Ma, Z. (2024). SFTe: Temporal Knowledge Graphs Embedding for Future Interaction Prediction. Information Systems, 102423.
2023
Semantic Web Journal
[1] (TRKGE) Song, B., Amouzouvi, K., Xu, C., Wang, M., Lehmann, J., & Vahdati, S. Temporal Relevance for Representing Learning over Temporal Knowledge Graphs.
Expert Systems with Applications
[1] (TPRG) Bai, L., Chen, M., Zhu, L., & Meng, X. (2023). Multi-hop temporal knowledge graph reasoning with temporal path rules guidance. Expert Systems with Applications, 223, 119804. Github
The Journal of Supercomputing
[1] (TKGA) Wang, Z., You, X., & Lv, X. (2023). A relation enhanced model for temporal knowledge graph alignment. The Journal of Supercomputing, 1-23.
Information Systems
[1] (RITI) Liu, R., Yin, G., Liu, Z., & Tian, Y. (2023). Reinforcement learning with time intervals for temporal knowledge graph reasoning. Information Systems, 102292.
Information Sciences
[1] (T-GAE) Hou, X., Ma, R., Yan, L., & Ma, Z. (2023). T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion. Information Sciences, 119225.
[2] (TASTER) Wang, X., Lyu, S., Wang, X., Wu, X., & Chen, H. (2023). Temporal knowledge graph embedding via sparse transfer matrix. Information Sciences, 623, 56-69.
[3] (TLmod) Bai, L., Yu, W., Chai, D., Zhao, W., & Chen, M. (2023). Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules. Information Sciences, 621, 22-35.
IEEE/ACM Transactions on Audio, Speech, and Language Processing
[1] (TARGAT) Xie, Z., Zhu, R., Liu, J., Zhou, G., & Huang, J. X. (2023). TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
Applied Intelligence
[1] (TBDRI) Yu, M., Guo, J., Yu, J., Xu, T., Zhao, M., Liu, H., … & Yu, R. (2023). TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion. Applied Intelligence, 53(5), 5072-5084.
[2] (GLANet) Wang, J., Lin, X., Huang, H., Ke, X., Wu, R., You, C., & Guo, K. (2023). GLANet: temporal knowledge graph completion based on global and local information-aware network. Applied Intelligence, 1-17.
[3] (ChronoR-CP) Li, M., Sun, Z., Zhang, W., & Liu, W. (2023). Leveraging semantic property for temporal knowledge graph completion. Applied Intelligence, 53(8), 9247-9260.
[4] (TIAR) Mu, C., Zhang, L., Ma, Y., & Tian, L. (2023). Temporal knowledge subgraph inference based on time-aware relation representation. Applied Intelligence, 53(20), 24237-24252.
[5] (TNTSimplE) He, P., Zhou, G., Zhang, M., Wei, J., & Chen, J. (2023). Improving temporal knowledge graph embedding using tensor factorization. Applied Intelligence, 53(8), 8746-8760.
Neural Networks
[1] (TFSC) Zhang, H., & Bai, L. (2023). Few-shot link prediction for temporal knowledge graphs based on time-aware translation and attention mechanism. Neural Networks, 161, 371-381. Github
[2] Shao, P., Liu, T., Che, F., Zhang, D., & Tao, J. (2023). Adaptive pseudo-Siamese policy network for temporal knowledge prediction. Neural Networks.
Neurocomputing
[1] Shao, P., He, J., Li, G., Zhang, D., & Tao, J. (2023). Hierarchical Graph Attention Network for Temporal Knowledge Graph Reasoning. Neurocomputing, 126390.
[2] (TANGO) Wang, Z., Ding, D., Ren, M., & Conti, M. (2023). TANGO: A Temporal Spatial Dynamic Graph Model for Event Prediction. Neurocomputing, 126249.
IEEE Transactions on Neural Networks and Learning Systems
[1] (QDN) Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion. IEEE Transactions on Neural Networks and Learning Systems. Github
Journal of Systems Science and Systems Engineering
[1] Yan, Z., & Tang, X. (2023). Narrative Graph: Telling Evolving Stories Based on Event-centric Temporal Knowledge Graph. Journal of Systems Science and Systems Engineering, 32(2), 206-221.
Engineering Applications of Artificial Intelligence
[1] (RoAN) Bai, L., Ma, X., Meng, X., Ren, X., & Ke, Y. (2023). RoAN: A relation-oriented attention network for temporal knowledge graph completion. Engineering Applications of Artificial Intelligence, 123, 106308. Github
Future Generation Computer Systems
[1] (TAL-TKGC) Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion. Future Generation Computer Systems.
Cognitive Computation
[2] (MsCNN) Liu, W., Wang, P., Zhang, Z., & Liu, Q. (2023). Multi-Scale Convolutional Neural Network for Temporal Knowledge Graph Completion. Cognitive Computation, 1-7.
ACM Transactions on Knowledge Discovery from Data
[1] (DuCape) Zhang, S., Liang, X., Tang, H., Zheng, X., Zhang, A. X., & Ma, Y. DuCape: Dual Quaternion and Capsule Network Based Temporal Knowledge Graph Embedding. ACM Transactions on Knowledge Discovery from Data.
IEEE Transactions on Knowledge and Data Engineering
[1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation. IEEE Transactions on Knowledge and Data Engineering. Github
Knowledge-Based Systems
[1] (RLAT) Bai, L., Chai, D., & Zhu, L. (2023). RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism. Knowledge-Based Systems, 269, 110514.
[2] Luo, X., Zhu, A., Zhang, J., & Shao, J. (2024). HierarT: Multi-hop temporal knowledge graph forecasting with hierarchical reinforcement learning. Knowledge-Based Systems, 112164.
Journal of Computational Design and Engineering
[1] (MetaRT) Zhu, L., Xing, Y., Bai, L., & Chen, X. (2023). Few-shot link prediction with meta-learning for temporal knowledge graphs. Journal of Computational Design and Engineering, 10(2), 711-721.
Entropy
[1] 🔥 (IMF) Du, Z., Qu, L., Liang, Z., Huang, K., Cui, L., & Gao, Z. (2023). IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs. Entropy, 25(4), 666. Github
Complex & Intelligent Systems
[1] (FTMO) Zhu, L., Bai, L., Han, S., & Zhang, M. (2023). Few-shot temporal knowledge graph completion based on meta-optimization. Complex & Intelligent Systems, 9(6), 7461-7474. Github
World Wide Web
[1] (FTMF) Bai, L., Zhang, M., Zhang, H., & Zhang, H. (2023). FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism. World Wide Web, 26(3), 1243-1270. Github
DMKD
[1] (OSLT) Ma, R., Mei, B., Ma, Y., Zhang, H., Liu, M., & Zhao, L. (2023). One-shot relational learning for extrapolation reasoning on temporal knowledge graphs. Data Mining and Knowledge Discovery, 1-18.
2022
Knowledge-Based Systems
[1] (EvoExplore) Jiasheng Zhang, Shuang Liang, Yongpan Sheng, Jie Shao. “Temporal knowledge graph representation learning with local and global evolutions”. Knowledge-Based Systems 2022. Github
[2] (TuckERT) Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, Tong Liu. “Tucker decomposition-based temporal knowledge graph completion”. Knowledge Based Systems 2022. Github
Expert Systems with Applications
[1] (BTDG) Yujing Lai, Chuan Chen, Zibin Zheng, Yangqing Zhang. “Block term decomposition with distinct time granularities for temporal knowledge graph completion”. Expert Systems with Applications 2022. Github
2021
Applied Soft Computing
[1] (TPath) Luyi Bai, Wenting Yu, Mingzhuo Chen, Xiangnan Ma. “Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning”. Applied Soft Computing 2021.
TKDD
[1] (TPmod) Bai, L., Ma, X., Zhang, M., & Yu, W. (2021). Tpmod: A tendency-guided prediction model for temporal knowledge graph completion. ACM Transactions on Knowledge Discovery from Data, 15(3), 1-17. Github
[2] (Dacha) Chen, L., Tang, X., Chen, W., Qian, Y., Li, Y., & Zhang, Y. (2021). Dacha: A dual graph convolution based temporal knowledge graph representation learning method using historical relation. ACM Transactions on Knowledge Discovery from Data (TKDD), 16(3), 1-18.
2020
IEEE Access
[1] (TDG2E) Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution. IEEE Access, 8, 6849-6860.
[2] (3DRTE) Wang, J., Zhang, W., Chen, X., Lei, J., & Lai, X. (2020). 3drte: 3d rotation embedding in temporal knowledge graph. IEEE Access, 8, 207515-207523.
2019
Journal of Web Semantics
[1] (ConT) Ma, Y., Tresp, V., & Daxberger, E. A. (2019). Embedding models for episodic knowledge graphs. Journal of Web Semantics, 59, 100490.